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NOMENCLATURE 

steady state temperature coeffkients; 
coefficient defined by equation (17); 
domain boundaries ; 
Biot number, hR,/k ; 
solution domain ; 
initial condition; 
function given by equation (10); 
film coefficient ; 
slab dimensions shown in Fig. 1; 
thermal conductivity of slab material; 
heater half spacing ; 
coefficients given by equation (3); 
heat flux; 
dimensionless heat flux, qR,!kt, ; 
dimensionless radial coordinate ; 
heater radius ; 
position vector; 
temperature; 
dimensionless temperature, t/t,, ; 
transient solution for homogeneous boundary 
conditions; 
steady state solution 
Cartesian coordinates ; 
thermal diffusivity ; 
angular coordinate ; 
eigenvalue ; 
dimensionless time (Fourier modulus), ar/R; ; 
time ; 
dimensionless outward directed normal. 

INTRODUCTION 
THE PROBLEM of pavement heating installations can be 
simulated by a plane slab with embedded heat sources [ 11. 
In cases where the heater diameter is small compared to the 
heater depth, an analytical solution can be obtained assuming 
the heaters to be point sources in a two dimensional domain. 
However, when dealing with installations consisting of 
buried tubes with a heated fluid flowing inside, the heater 
diameter is about the same size as the heater depth, as 
suggested by the ASHRAE Guide and Data Book [2]. In 
this situation, a better model for the problem is a plane 
slab with cylindrical holes which are constant temperature 
surfaces [ 11, there is no analytical solution to this problem 
and an approximate solution was obtained using the point- 
matching technique. 

The point-matching technique has been successfully used 
to solve steady state heat conduction problems in solids 
bounded internally by a cylinder [35]. Ojalvo and Linzer 
[6] presented a good description of the method and different 
techniques to improve the solution; a brief explanation of 
the use of point-matching in transient problems was given, 
but only a one dimensional example was solved. Sparrow 
et al. [7] developed a new method to generate a family of 
functions which are solutions of the transient heat transfer 
equation, using a cartesian coordinate system. In [S] it 
was found that a polar coordinate system, as suggested in 
161, and the least square fit technique used by Sparrow [7], 
would produce more accurate results with less computing 
time, when applied to the problem in question. 

heater surface ; 
slab upper surface. ; 
slab lower surface. 

* The material for this paper was developed in partial 
fulfillment of the requirements for the degree, Doctor of 
Philosophy, Mechanical Engineering, Department, Kansas 
State University, Manhattan, Kansas. 
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FORMULATION 

The heat flow in a homogeneous solid with temperature 
independent properties is governed by : 

Using the dimensionless form and assuming linear 

boundary conditions, results in : 

dT 
V’T = 5e, in D (2) 

aT 
PI 5 + PZT = ~3. on B (3) 

T = f(R), in D, e = 0. (4) 

Where pdi = 1,2,3) are constants or functions of the 

space variables only, and n is the outward directed normal 

to the boundaries. 

In order to apply the point-matching technique the 

solution is divided into two parts. 

T(R, 0) = U(R, 0) + V(R) (5) 

where U is the transient solution for homogeneous boundary 

conditions and V is the steady state solution. 

Therefore, equations (2W4) are transformed into 

vzv = 0 in D (6) 

PI g + P,V = P3 on B (7) 

au 
vw=m in D (8) 

au 
Pl,, + P*u = 0 on B (9) 

U = F(R) =/(R) - V(R) in D, 8 = 0. (10) 

To solve the problem in a realistic manner, the following 

assumptions should be added [l] : 

1. Temperature variation in the direction of the heater 

axis is negligible. 

2. Heater spacing and depth are uniform. 

3. Thermal resistance between heater and slabis negligible. 

4. Boundary conditions are independent of time. 

5. The slab initially has an arbitrary temperature dis- 

tribution and for 0 = 0 the dimensionless temperature 

around the heater circumference jumps to one and is 

kept at this value throughout the process. 

With these assumptions, the solution domain D and the 
coordinate system are those shown in Fig. 1. The values of 

the pi in equations (3), (7) and (9) are given below : 

x = H,, OGYGL (11) 
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FIG. 1. Coordinate system for homogeneous slab with 
embedded cylindrical heat sources. 

y = L -H,<xbH, (12) 

PI = 1 
pz = Bil , x = -HI, 0GyG.L (13) 

~3 = -QI 

r=l, 0<4cx. (14) 

STEADY STATE SOLUTION 

The general solution of equation (6) obtained by separa- 

tion of variables (3) and using symmetry is 

V(r, 4) = a, + a3 In r + z (b-r” + c,r-“)cos r& (15) 
n=l 

From the conditions given by equation (14), and truncating 

the series in equation (15) for n = N, results in 

V(r, 4) = 1 + a3 In r + 5 b,(f’ - r-“)cos n$. (16) 
“=I 

The coefftcients n,, b,, b,, b, are determined by 

point-matching as explained in 181. 

TRANSIENT SOLUTION 

The transient solution is given in [7,8] as 

u(r, 4, e) = f At exp (- n:e) Wk Cr. 4) 
.k= , 

where, as in [8] 

Wr, 4) = f D,.Gdr, 4. Ld 
n=o 

(17) 

(18) 

(19) 
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where J, and Y, denote the Bessel functions of order n and 
of the first and second kind, respectively. 

The series are truncated for application of the point- 
matching technique as explained in [68]. The boundary 
conditions are used to determine the eigenvalues & and 
coefficients &. The coefficients Al: are calculated from the 
initial conditions. 

The complete solution is then : 

+ 1 + nslnr + C b,(r” - r-“)cosnd. (20) 
a=1 

NUMERICAL EXAMPLE : 
Consider the slab and heater arrangement such that 

(with heater radius = I) 

H, = 5 
H, = 10 

L = 12. 

Initially the whole slab is at the uniform temperature 
T = 0. At the instant 8 = 0 the heaters are turned on and the 
dimensionless heater surface temperature jumps to 1 and 
is kept at this value. The lower surface is insulated and the 
upper surface loses heat by convection to the environment 
at 0 degrees, with a Biot number Bi, = 0127 and dimen- 
sionless heat flux Q, = 0. 

The first three eigenvalues are listed below, as well as the 
eigenvalues for the point source approximation for the 
same geometry and boundary conditions [9]. 

Eigenvalues 

-- 

Example Point source 

1, 01301 007081 

12 02523 02417 

1, 0304 02712 

Figure 2 shows the variation of the temperature profile 
on the upper surface, with time. 

CONCLUSIONS 

The point-matching technique seems to be an excellent 
means of solving the class of problems discussed in this 
work when’ used with a digital computer. The part that 
consumes the most computer time is the calculation of the 
eigenvalues because of the complicated transcendental 
equations that must be solved by trial and error. However, 
since both the eigenvalues and the coefficients De’s depend 
solely on the homogeneous boundary conditions, different 

L 
06 

1 

0 4 e I2 

Dimenrionkss distance. Y 

FIG. 2. Upper surface dimensionless temperature profile 
variation, with time, during heating. 

initial conditions can be analyzed quickly at very little 
extra cost since only the coefficients Al’s need to be recal- 
culated. The same reasoning applies in cases where only the 
nonhomogeneous part of the boundary conditions change, 
namely Qr and Q2. In this case only the steady state solution 
V(r, 4) and the coefficients At’s have to be re-evaluated. 

It can be seen from the results that the point source 
approximation cannot be used for situations similar to those 
in the numerical example, as explained in the introduction. 
The eigenvalues of the point source approximation are 
lower bounds for the real case. 
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NOMENCLATURE 

E w1 electric field intensity at the wire surface [V/m] ; 
9.7 effective gravitational acceleration [m/G] ; 
K, relative permittivity of the liquid [dimensionless] ; 
rcr internal radius of the outer cylinder [m] ; 
r w1 outer radius of the heater wire [m] ; 
14 voltage applied between the wire and the outer 

cylinder IV] : 
60. permittivity of free space [F/m] ; 
PL, density of the liquid [kg/m3]. 

INTRODUCTION 

THF INCREASE of heat-transfer rate in a fluid, due to the 
application of an electric field was first pointed out by 
Senftleben Cl]. Ahsmann and Kriinig [2] studied the effect 
of electric field of rectangular waveform on the heat-transfer 
of some organic liquids. Several workers tried to explain the 
electro-convectional heat-transfer as due to the change of 
the electric susceptibility in presence of a temperature 
gradient. According to Weber and Halsey [3] the heat- 
transfer rate is suppressed by one of the non-conservative 
forces in the fluid acting towards the heat source due to the 
interaction of thermal and electrical gradients. They also 
concluded that this effect is small compared with the im- 
proved heat-transfer due. to the motion of the free charges 
under the action of an electric field. 

Allen [4] applied both d.c. and a.c. fields separately and 
also studied the effect of mixed stresses on the electro- 
convectional heat-transfer. According to him the alternating 

stress alone can increase the heat-transfer rate and enhance- 
ment of the heat-transfer due to the application of the uni- 
directional stress, as reported by early workers, was not due 
to the unidirectional field but due to the “ripples” present 
in the high voltage supplies. Like Weber and Halsey [3] he 
also suggested that the increase in heat-transfer is due to the 
motion of electric charges, present in the liquid bulk, under 
the action of alternating electric field. Watson [S] experi- 
mented with n-hexane. He disregarded the idea that the 
effect of electric field on the free charges is the reason for 
enhancement of the heat-transfer. According to him a 
permittivity gradient is created due to the temperature 
gradient in the liquid and the increased field strength 
enhances heat-transfer rate from the heater, since the force 
on the non-homogeneous dielectric increases with the square 
of the electric field. 

Mascarenhas [6] was of the same opinion that the change 
in the heat-transfer rate in a liquid dielectric is due to the 
interaction between the thermal and the electric fields. 
The thermal conductivity of liquid shows strong variation 
due to the action of the electric field. 

According to Markels and Durfee [7] the increase in the 
heat-transfer is due to “Dielectrophoresis’‘-ti phenomenon 
in which there is a movement of the dielectric liquid when 
placed in a non-uniform electric field and this movement is 
caused by induced polarization. 

Choi [8] investigated the effect of the radial electric held 
on boiling heat-transfer in a dielectric liquid He applied 
d.c. field and found improvement in heat transfer with 
increasing fields. Choi concluded that, in a non-uniform 


